<u>Algebra</u>	Algebra II Yearlong Mathematics Map								
Resources: A	Approved	from Board of Educati	on	Assessments: PAR	CC Assessments, District Benchmark Assessme	nts			
		Common Core State	Standards – Standards for Mathematical Practice:						
		1. Make sense of probl	ems and persevere in solving them.	2. Reason abstract	tly and quantitatively.				
		3. Construct viable arg	uments and critique the reasoning of others.	4. Model with mat	thematics.				
		5. Use appropriate too	ls strategically.	6. Attend to precis	sion.				
		7. Look for and make u	ise of structure.	8. Look for and ex	press regularity in repeated reasoning.				
Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary			
N	CN	Perform arithmetic operations with complex numbers.	N-CN.1 Know there is a complex number i such that $i^2 = -1$, and every complex number has the form a + bi with a and b real.	Complex Numbers in Standard Form	N-CN.1 Recognize there is a complex number <i>i</i>	imaginary number			
N	CN	Perform arithmetic operations with complex numbers.	N-CN.1 Know there is a complex number i such that $i^2 = -1$, and every complex number has the form a + bi with a and b real.	Complex Numbers in Standard Form	N-CN.1 Write complex numbers in the form a+bi	standard form of a complex number			
N	CN	Perform arithmetic operations with complex numbers.	N-CN.2 Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	Arithmetic operations with Complex Numbers	N-CN.2 Apply the commutative, associative, and distributive properties to operations involving complex numbers	complex conjugate			
N	CN	Use complex numbers in polynomial identities and equations.	N-CN.7 Solve quadratic equations with real coefficients that have complex solutions.	Complex Solutions in Polynomials	N-CN.7 Solve quadratic equations with real coefficients that have complex solutions	imaginary roots; irrational roots; rational roots; <i>discriminant</i>			
N	CN	Use complex numbers in polynomial identities and equations.	N-CN.8 (+) Extend polynomial identities to the complex numbers. For example, rewrite $x^2 + 4$ as $(x + 2i)(x - 2i)$.	Complex Numbers in Polynomials	N-CN.8 Rewrite polynomials in factored form that involve complex numbers	Sum of squares			
Ν	CN	Use complex numbers in polynomial identities and equations.	N-CN.9 (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.	Complex Numbers in Polynomials	N-CN.9 Prove that the Fundamental Theorem of Algebra is true for quadratic polynomials	Fundamental Theorem of Algebra; multiple roots			

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
А	SSE	Interpret the structure	A-SSE.1 Interpret expressions that represent a quantity	Polynomial	A-SSE.1 Model expressions that represent a	
		of expressions.	in terms of its context.★	Expressions	quantity in terms of its context	
A	SSE	Interpret the structure	A-SSE.1a Interpret parts of an expression, such as	Polynomial	A-SSE.1a Interpret parts of an expression, such as	degree; leading
		of expressions.	terms, factors, and coefficients.	Expressions	terms, factors, and coefficients	<i>coefficient, quadratic,</i> cubic, quartic
A	SSE	Interpret the structure	A-SSE.1b Interpret complicated expressions by viewing	Polynomial	A-SSE.1b Describe each entity of a complicated	decay factor; growth
		of expressions.	one or more of their parts as a single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P.	Expressions	expression	factor
A	SSE	Interpret the structure	A-SSE.2 Use the structure of an expression to identify	Polynomial	A-SSE.2 Recognize equivalent forms of	Sum of cubes,
		of expressions.	ways to rewrite it. For example, see x4 – y4 as (x2)2 –	Expressions	expressions	difference of cubes,
			(y2)2, thus recognizing it as a difference of squares			difference of two
			that can be factored as (x2 – y2)(x2 + y2).			squares, completing the square
A	SSE	Write expressions in	A-SSE.4 Derive the formula for the sum of a finite	Polynomial	A-SSE.4 Derive the formula for the sum of a finite	geometric series;
		equivalent forms to	geometric series (when the common ratio is not 1),	Expressions	geometric series	finite differences;
		solve problems.	and use the formula to solve problems. For example,			arithmetic series
			calculate mortgage payments.			
А	SSE	Write expressions in	A-SSE.4 Derive the formula for the sum of a finite	Polynomial	A-SSE.4 Apply the formula for the sum of a finite	
		equivalent forms to	geometric series (when the common ratio is not 1),	Expressions	geometric series to solve problems	
		solve problems.	and use the formula to solve problems. For example,			
			calculate mortgage payments. ★			
А	APR	Perform arithmetic	A-APR.1 Understand that polynomials form a system	Arithmetic	A-APR.1 Perform addition, subtraction and	
		operations on	analogous to the integers, namely, they are closed	Operations on	multiplication on polynomials.	
		polynomials.	junder the operations of addition, subtraction, and	Polynomial		
			multiplication; add, subtract, and multiply polynomials.	Expressions		

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
A	APR	Perform arithmetic	A-APR.1 Understand that polynomials form a system	Arithmetic	A-APR.1 Compare operations on polynomials to	
		operations on	analogous to the integers, namely, they are closed	Operations on	operations on other systems such as integers	
		polynomials.	under the operations of addition, subtraction, and	Polynomial		
			multiplication; add, subtract, and multiply polynomials.	Expressions		
A	APR	Understand the	A-APR.2 Know and apply the Remainder Theorem: For	Factors of	A-APR.2 State and apply the Remainder theorem	Remainder Theorem
		relationship between	a polynomial p(x) and a number a, the remainder on	Polynomial		
		zeros and factors of	division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$	Expressions		
		polynomials.	is a factor of p(x).			
А	APR	Understand the	A-APR.2 Know and apply the Remainder Theorem: For	Factors of	A-APR.2 Recognize the relationship between	roots
		relationship between	a polynomial p(x) and a number a, the remainder on	Polynomial	zeros and factors of a polynomial	
		zeros and factors of	division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$	Expressions		
		polynomials.	is a factor of p(x).			
А	APR	Understand the	A-APR.3 Identify zeros of polynomials when suitable	Zeros of Polynomial	A-APR.3 Identify zeros of polynomials given the	multiple roots/double
		relationship between	factorizations are available, and use the zeros to	Equations	factorization	roots; intercepts;
		zeros and factors of	construct a rough graph of the function defined by the			
		polynomials.	polynomial.			
А	APR	Understand the	A-APR.3 Identify zeros of polynomials when suitable	Zeros of Polynomial	A-APR.3 Utilize the zeros of a polynomial to	
		relationship between	factorizations are available, and use the zeros to	Equations	construct a rough graph of the function	
		zeros and factors of	construct a rough graph of the function defined by the			
		polynomials.	polynomial.			
А	APR	Use polynomial	A-APR.4 Prove polynomial identities and use them to	Identities of	A-APR.4 Prove polynomial identities	sum of cubes, sum of
		identities to solve	describe numerical relationships. For example, the	Polynomial		squares, difference of
		problems.	polynomial identity $(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be	Expressions		cubes/squares/
			used to generate Pythagorean triples.			quadratic formula
A	APR	Use polynomial	A-APR.4 Prove polynomial identities and use them to	Identities of	A-APR.4 Write equivalent forms of polynomial	
		identities to solve	describe numerical relationships. For example, the	Polynomial	expressions using identities	
		problems.	polynomial identity $(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be	Expressions		
			used to generate Pythagorean triples.			

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
A	APR	Use polynomial identities to solve problems.	A-APR.5 (+) Know and apply the Binomial Theorem for the expansion of $(x + y)^n$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.1	Polynomial Expressions	A-APR.5 Recognize Pascal's Triangle as the coefficients in binomial expansions	Pascal's Triangle; Binomial Theorem
A	APR	Use polynomial identities to solve problems.	A-APR.5 (+) Know and apply the Binomial Theorem for the expansion of $(x + y)^n$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.2	Polynomial Expressions	A-APR.5 Expand polynomial expressions using Pascal's triangle	
A	APR	Rewrite rational expressions.	A-APR.6 Rewrite simple rational expressions in different forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$, $b(x)$, $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.	Rational Expressions	A-APR.6 Write equivalent forms of rational expressions	rational expression; long division; <i>degree</i>
A	APR	Rewrite rational expressions.	A-APR.7 (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.	Arithmetic Operations on Rational Expressions	A-APR.7 Apply operations to rational expressions	
A	CED	Create equations that describe numbers or relationships.	A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	Equations and Inequalties in one variable	A-CED.1 Create and use equations in one variable	
A	CED	Create equations that describe numbers or relationships.	A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	Equations and Inequalties in one variable	A-CED.1 Create and use inequalities in one variable	

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
A	CED	Create equations that describe numbers or relationships.	A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	Equations and Inequalties in two variables	A-CED.2 Create equations in two or more variables to represent relationships between quantities	compound inequality; power regression; exponential regression; best fitting quadratic model; quadratic regression
A	CED	Create equations that describe numbers or relationships.	A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	Equations and Inequalties in two variables	A-CED.2 Graph equations on coordinate axes with labels and scales	
A	CED	Create equations that describe numbers or relationships.	A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	Constraints within Equations and Inequalties	A-CED.3 Represent constraints using one or more equations	dependent; inconsistent system of equations; independent; restriction on the domain
A	CED	Create equations that describe numbers or relationships.	A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	Constraints within Equations and Inequalties	A-CED.3 Represent constraints using one or more inequalities	
A	CED	Create equations that describe numbers or relationships.	A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	Constraints within Equations and Inequalties	A-CED.3 Interpret solutions to systems of equations	
A	CED	Create equations that describe numbers or relationships.	A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	Constraints within Equations and Inequalties	A-CED.3 Interpret solutions to systems of inequalities	

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
A	CED	Create equations that describe numbers or relationships.	A-CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.	Literal Equations	A-CED.4 Write equivalent forms of equations	
A	REI	Understand solving equations as a process of reasoning and explain the reasoning.	A-REI.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	Rational and Radical Equations	A-REI.2 Solve rational and radical equations in one variable	like radicals, radical equations, radicand; radical function
A	REI	Understand solving equations as a process of reasoning and explain the reasoning.	A-REI.2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	Rational and Radical Equations	A-REI.2 Recognize equations where extraneous solutions exist	extraneous solution
A	REI	Represent and solve equations and inequalities graphically.	A-REI.11 Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	Solutions of Equations and Inequalties	A-REI.11 Explain why a point(s) of intersection represent a solution(s) to a system	logarithmic function
A	REI	Represent and solve equations and inequalities graphically.	A-REI.11 Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	Solutions of Equations and Inequalties	A-REI.11 Approximate the solution(s) to a system using technology	

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	IF	Interpret functions that arise in applications in terms of the context.	F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and	Features of Functions	F-IF.4 Interpret key features of graphs and tables	local maximum; local minimum; cubic; quartic; <i>absolute</i> <i>maximum; absolute</i> <i>minimum; end</i> <i>behavior; root;</i> periodicity
F	IF	Interpret functions that arise in applications in terms of the context.	 periodicity.★ F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.★ 	Features of Functions	F-IF.4 Sketch a graph given key features of a model	
F	IF	Interpret functions that arise in applications in terms of the context.	F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.★	Domain of Functions	F-IF.5 Relate the domain of a function to its graph and context	domain; range
F	IF	Interpret functions that arise in applications in terms of the context.	F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.★	Rate of Change	F-IF.6 Calculate and interpret average rate of change of a function in various forms	rate of change

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	IF	Analyze functions	F-IF.7 Graph functions expressed symbolically and	Graphical Features	F-IF.7 Graph functions by hand	cubic, quartic, <i>linear,</i>
		using different	show key features of the graph, by hand in simple	of Functions		quadratic,
		representations.	cases and using technology for more complicated			exponential
			cases. 🖈			
F	IF	Analyze functions	F-IF.7 Graph functions expressed symbolically and	Graphical Features	F-IF.7 Graph functions using technology	
		using different	show key features of the graph, by hand in simple	of Functions		
		representations.	cases and using technology for more complicated			
			cases.★			
F	IF	Analyze functions	F-IF.7b Graph square root, cube root, and piecewise-	Graphing nth root	F-IF.7b Graph square root functions	radical function;
		using different	defined functions, including step functions and	and piecewise		rational function;
		representations.	absolute value functions.	Functions		radical; index
F	IF	Analyze functions	F-IF.7b Graph square root, cube root, and piecewise-	Graphing nth root	F-IF.7b Graph cube root functions	
		using different	defined functions, including step functions and	and piecewise		
		representations.	absolute value functions.	Functions		
F	IF	Analyze functions	F-IF.7b Graph square root, cube root, and piecewise-	Graphing nth root	F-IF.7b Graph piecewise-defined functions	piecewise function
		using different	defined functions, including step functions and	and piecewise		
		representations.	absolute value functions.	Functions		
F	IF	Analyze functions	F-IF.7b Graph square root, cube root, and piecewise-	Graphing nth root	F-IF.7b Graph step functions	step functions
		using different	defined functions, including step functions and	and piecewise		
		representations.	absolute value functions.	Functions		
F	IF	Analyze functions	F-IF.7b Graph square root, cube root, and piecewise-	Graphing nth root	F-IF.7b Graph absolute value functions	absolute value
		using different	defined functions, including step functions and	and piecewise		function
		representations.	absolute value functions.	Functions		
F	IF	Analyze functions	F-IF.7c Graph polynomial functions, identifying zeros	Graphical Features	F-IF.7c Graph polynomial functions using key	
		using different	when suitable factorizations are available, and showing	of Functions	features	
		representations.	end behavior.			
F	IF	Analyze functions	F-IF.7e Graph exponential and logarithmic functions,	Graphing	F-IF.7e Graph exponential functions using key	exponential function
		using different	showing intercepts and end behavior, and	Exponential and	features	
		representations.	trigonometric functions, showing period, midline, and	Logarithmic		
			amplitude.	Functions		

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	IF	Analyze functions	F-IF.7e Graph exponential and logarithmic functions,	Graphing	F-IF.7e Graph logarithmic functions using key	logarithmic function
		using different	showing intercepts and end behavior, and	Exponential and	features	
		representations.	trigonometric functions, showing period, midline, and	Logarithmic		
			amplitude.	Functions		
F	IF	Analyze functions	F-IF.7e Graph exponential and logarithmic functions,	Graphing	F-IF.7e Graph trigonometric functions using key	period, midline,
		using different	showing intercepts and end behavior, and	Exponential and	features	amplitude
		representations.	trigonometric functions, showing period, midline, and	Logarithmic		
			amplitude.	Functions		
F	IF	Analyze functions	F-IF.8 Write a function defined by an expression in	Equivalent Forms of	F-IF.8 Write equivalent forms of functions	vertex form of a
		using different	different but equivalent forms to reveal and explain	Functions		quadratic function
		representations.	different properties of the function.			
F	IF	Analyze functions	F-IF.8 Write a function defined by an expression in	Equivalent Forms of	F-IF.8 Explain how the form of an equation reveals	
		using different	different but equivalent forms to reveal and explain	Functions	properties of the function	
		representations.	different properties of the function.			
F	IF	Analyze functions	F-IF.9 Compare properties of two functions each	Compare Functions	F-IF.9 Compare properties of two functions in	
		using different	represented in a different way (algebraically,		varied representations	
		representations.	graphically, numerically in tables, or by verbal			
			descriptions). For example, given a graph of one			
			quadratic function and an algebraic expression for			
			another, say which has the larger maximum.			
F	BF	Build a function that	F-BF.1 Write a function that describes a relationship	Writing Functions	F-BF.1 Model a real world situation with a	
		models a relationship	between two quantities. ★		function in two variables	
		between two				
		quantities.				
F	BF	Build a function that	F-BF.1b Combine standard function types using	Arithmetic	F-BF.1b Combine functions using arithmetic	composite functions
		models a relationship	arithmetic operations. For example, build a function	operations on	operations	
		between two	that models the temperature of a cooling body by	Functions		
		quantities.	adding a constant function to a decaying exponential,			
			and relate these functions to the model.			

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	BF	Build new functions from existing functions.	F-BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	Transformations of Functions	F-BF.3 Compare a function to the parent function	
F	BF	Build new functions from existing functions.	F-BF.4 Find inverse functions.	Inverse Functions	F-BF.4 Write the inverse of a function	inverse function; inverse relation
F	BF	Build new functions from existing functions.	F-BF.4a Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2x^3$ for $x > 0$ or $f(x) = (x+1)/(x-1)$ for $x \neq 1$.	Solving Equations	F-BF.4a Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse	
F	LE	Construct and compare linear, quadratic, and exponential models and solve problems.	F-LE.4 For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.	Exponential Models and Logarithms	F-LE.4 Write exponential models as logarithms	logarithm; common logarithm; logarithmic equation; natural logarithm; compound interest; compounding period; continuous growth; exponential decay function; exponential growth function; half life; exponential equation
F	LE	Construct and compare linear, quadratic, and exponential models and solve problems.	F-LE.4 For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.	Exponential Models and Logarithms	F-LE.4 Evaluate logarithms using technology	

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	TF	Extend the domain of	F-TF.1 Understand radian measure of an angle as the	Radian Measure	F-TF.1 Recognize radian measure of an angle as	<i>radian</i> ; unit circle
		trigonometric	length of the arc on the unit circle subtended by the	and Arc Length	the length of the arc on the unit circle subtended	
		functions using the	angle.		by the angle	
		unit circle.				
F	TF	Extend the domain of	F-TF.2 Explain how the unit circle in the coordinate	Trigonometric	F-TF.2 Explain how the unit circle in the	
		trigonometric	plane enables the extension of trigonometric functions	Functions using the	coordinate plane enables the extension of	
		functions using the	to all real numbers, interpreted as radian measures of	Unit Circle	trigonometric functions to all real numbers	
		unit circle.	angles traversed counterclockwise around the unit circle.			
F	TF	Extend the domain of	F-TF.2 Explain how the unit circle in the coordinate	Trigonometric	F-TF.2 Interpret radian measures of angles	
		trigonometric	plane enables the extension of trigonometric functions	Functions using the	traversed counterclockwise around the unit circle	
		functions using the	to all real numbers, interpreted as radian measures of	Unit Circle		
		unit circle.	angles traversed counterclockwise around the unit			
			circle.			
F	TF	Model periodic	F-TF.5 Choose trigonometric functions to model	Modeling with	F-TF.5 Choose trigonometric functions to model	amplitude, period,
		phenomena with	periodic phenomena with specified amplitude,	Trigonometric	periodic phenomena with specified amplitude,	frequency, midline,
		trigonometric	frequency, and midline. \star	Functions	frequency, and midline	trigonometric
		functions.				function; sine, cosine
						and tangent
F	TF	Prove and apply	F-TF.8 Prove the Pythagorean identity $sin2(\theta) + cos2(\theta)$	Trigonometric	F-TF.8 Prove the Pythagorean identity	Pythagorean identity:
		trigonometric	= 1 and use it to find $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ given	Identities		$sin2(\theta) + cos2(\theta) = 1$
		identities.	$sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ and the quadrant of the angle.			
F	TF	Prove and apply	F-TF.8 Prove the Pythagorean identity $sin2(\theta) + cos2(\theta)$	Trigonometric	F-TF.8 Apply the Pythagorean identity	
		trigonometric	= 1 and use it to find $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ given	Identities		
		identities.	$\sin(\theta)$, $\cos(\theta)$, or $\tan(\theta)$ and the quadrant of the angle.			

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
S	ID	Summarize,	S-ID.4 Use the mean and standard deviation of a data	Interpreting	S-ID.4 Create a normal distribution for a given	distribution; normal
		represent, and	set to fit it to a normal distribution and to estimate	Quantitative Data	data set	distribution; normal
		interpret data on a	population percentages. Recognize that there are data			curve; <i>standard</i>
		single count or	sets for which such a procedure is not appropriate. Use			deviation, mean
		measurement variable	calculators, spreadsheets, and tables to estimate areas			
			under the normal curve.			
S	ID	Summarize,	S-ID.4 Use the mean and standard deviation of a data	Interpreting	S-ID.4 Determine whether a normal distribution is	
		represent, and	set to fit it to a normal distribution and to estimate	Quantitative Data	appropriate for a data set	
		interpret data on a	population percentages. Recognize that there are data			
		single count or	sets for which such a procedure is not appropriate. Use			
		measurement variable	calculators, spreadsheets, and tables to estimate areas			
			under the normal curve.			
S	ID	Summarize,	S-ID.4 Use the mean and standard deviation of a data	Interpreting	S-ID.4 Estimate areas under the normal curve	z-table; z-score
		represent, and	set to fit it to a normal distribution and to estimate	Quantitative Data	using calculators, spreadhseets, and tables	
		interpret data on a	population percentages. Recognize that there are data			
		single count or	sets for which such a procedure is not appropriate. Use			
		measurement variable	calculators, spreadsheets, and tables to estimate areas			
			under the normal curve.			
S	IC	Understand and	S-IC.1 Understand statistics as a process for making	Statistical	S-IC.1 Recognize statistics as a process for making	random sample;
		evaluate random	inferences about population parameters based on a	Inferences	inferences about population parameters based on	statistics; population
		processes underlying	random sample from that population.		a random sample from that population	
		statistical experiments				
S	IC	Understand and	S-IC.2 Decide if a specified model is consistent with	Statistical	S-IC.2 Justify whether a specified model is	
		evaluate random	results from a given data-generating process, e.g.,	Conclusions	consistent with results from a given data-	
		processes underlying	using simulation. For example, a model says a spinning		generating process	
		statistical experiments	coin falls heads up with probability 0.5. Would a result			
			of 5 tails in a row cause you to question the model?			

Conceptual	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
S	IC	Make inferences and	S-IC.3 Recognize the purposes of and differences	Sampling Methods	S-IC.3 Describe the purpose and difference	cluster sample;
		justify conclusions	among sample surveys, experiments, and		between various sampling procedures	convenience sample;
		from sample surveys,	observational studies; explain how randomization			simple random
		experiments, and	relates to each.			sample; self-selected
		observational studies				sample; stratified;
						systematic sample;
						experimental group;
						representative
						sample; unbiased;
						biased sample;
						population; skewed
						distribution
						(left/right)
S	IC	Make inferences and	S-IC.4 Use data from a sample survey to estimate a	Data Analysis	S-IC.4 Estimate a population mean or proportion	random sample;
		justify conclusions	population mean or proportion; develop a margin of		from a sample survey.	sample size
		from sample surveys,	error through the use of simulation models for random			
		experiments, and	sampling.			
		observational studies				
S	IC	Make inferences and	S-IC.4 Use data from a sample survey to estimate a	Data Analysis	S-IC.4 Develop a margin of error through the use	margin of error
		justify conclusions	population mean or proportion; develop a margin of		of simulation models for random sampling	
		from sample surveys,	error through the use of simulation models for random			
		experiments, and	sampling.			
-		observational studies				
S	IC	Make inferences and	S-IC.5 Use data from a randomized experiment to	Data Analysis	S-IC.5 Compare results from two treatments of	treatment
		justify conclusions	compare two treatments; use simulations to decide if		data	
		trom sample surveys,	differences between parameters are significant.			
		experiments, and				
		observational studies				

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
S	IC	Make inferences and	S-IC.5 Use data from a randomized experiment to	Data Analysis	S-IC.5 Decide whether differences between	
		justify conclusions	compare two treatments; use simulations to decide if		parameters are significant based on simulations	
		from sample surveys,	differences between parameters are significant.			
		experiments, and				
		observational studies				
S	IC	Make inferences and	S-IC.6 Evaluate reports based on data.	Data Analysis	S-IC.6 Draw conclusions from reports based on	
		justify conclusions			data	
		from sample surveys,				
		experiments, and				
		observational studies				
S	MD	Use probability to	S-MD.6 (+) Use probabilities to make fair decisions	Probability	S-MD.6 Justify a fair decision using probabilities	
		evaluate outcomes of	(e.g., drawing by lots, using a random number			
		decisions	generator).			
S	MD	Use probability to	S-MD.7 (+) Analyze decisions and strategies using	Probability	S-MD.7 Analyze decisions and strategies using	
		evaluate outcomes of	probability concepts (e.g., product testing, medical		probability concepts	
		decisions	testing, pulling a hockey goalie at the end of a game).			